

Financial aspects of flood and drought risk

Wolfgang Kron Geo Risks Research/Corporate Climate Centre Munich Re

8th Meeting of HELP – Jakarta, 1 November 2016

Thailand Overall losses: Insured losses: Largest river flood losses eve	<i>September - November 2011</i> US\$ 43bn US\$ 10bn er, worldwide effects/losses
Uttarakhand/India 5,500 fatalities, tens of thousands of pilgrims	June 2013 forced to stay in the cold mountains for many days
Philippines Overall losses: Insured losses: >6,000 fatalities 1,200,000 destroyed/damage	<i>November 2013 (</i> Typhoon Haiyan) US\$ 10bn US\$ 700m ed buildings
Atacama Desert Chile Overall losses: Insured losses: 31 fatalities	<i>March 2015</i> US\$ 1.5bn US\$ 500m
China Overall losses: Insured losses:	<i>June - August 2016</i> US\$ 30bn US\$ 400m

Floods (excluding tsunamis) in the period 2000-2014, in which more than 1500 people died

Year	Region	Event	Deaths*
2008	Myanmar	Cyclone Nargis	140,000
2013	Philippines	Typhoon Haiyan	6,334
2013	India	Flash floods	5,500
2007	Bangladesh	Cyclone Sidr	3,295
2004	India, Bangladesh, Nepal	Floods	2,200
2007	Bangladesh, India, Nepal	Floods	2,030
2004	Haiti, Dominican Republic	Floods	2,000
2004	Haiti	Hurricane Jeanne, floods	2,000
2010	Pakistan	Floods	1,760

* not including those missing

see article "**Flood disasters - a global perspective**" in Water Policy 17(2015) (HELP Special issue on Flood)

Source. Munich Re NatCatSERVICE 2014

Floods (excluding tsunamis) in the period 2000-2014, in which material losses* of US\$ 8bn and more occurred

* due to water, in original values

Year	Region	Event/basin(s)/area	Overall (US\$ bn)	Insured (US\$ bn)	% in- sured	
2005	USA	Hurr. Katrina/Gulf Coast	83 (2/3)	41.5 ^(2/3)	50	
2012	USA, Canada, Carib.	Hurr. Sandy/Northeast	46 (2/3)	19.7 ^(2/3)	43	
2011	Thailand	Chao Phraya	43	16	37	
2002	Central, S. Europe	Elbe, Danube, N. Italy	16.5	3.4	21	
2013	Central Europe	Danube, Elbe	12.6	3.1	25	
2008	USA	Missouri/Midwest	10	0.5	5	
2010	Pakistan	Indus	9.5	0.1	1	
2000	Italy, Switzerland	Southern Alps	8.5	0.48	6	
2010	China	East, Southeast, South	8	0.15	2	
2012	China	East, North-, Southeast	8	0.18	2	
2011	USA	Hurr. Irene/Northeast	5 (1/2)	3 (1/2)	55	
2013	Philippines	Typhoon Haiyan/Leite	5 (1/2)	0.35 (1/2)	7	

^(1/2) (2/3) = an estimated half/two thirds of the overall/insured losses were attributed to flood (the remainder to windstorm) see article. **Flood disasters - a global perspec**

see article "**Flood disasters - a global perspective**" in Water Policy 17(2015) (HELP Special issue on Flood)

Source. Munich Re NatCatSERVICE 2014

Number of high-loss weather events in the past decades (regarding overall losses)

Period (yrs.)	≥US\$ 2bn*	≥US\$ 5bn*	≥US\$ 10bn*
<1990 (>10)	3	-	-
1990s (10)	-	13	6
2000s (10)	-	10	3
2010s (4.5)	-	9	3

* in original values

Number of high-loss weather events in the past decades (regarding overall losses)

Period (yrs.)	≥US\$ 2bn*	≥US\$ 5bn*	≥US\$ 10bn*
<1990 (>10)	3#	3	-
1990s (10)	-	13	6
2000s (10)	-	10	3
2010s (4.5)	-	9	3

* in original values

[#] US\$ 3bn in 1980 translates into US\$ 5.8bn in 2013 after adjustment for inflation

Source. Munich Re NatCatSERVICE 2014

Number of high-loss weather events in the past decades (regarding overall losses)

Period (yrs.)	≥US\$ 2bn*	≥US\$ 5bn*	≥US\$ 10bn*
<1990 (>10)	3	-	-
1990s (10)	-	13	6
2000s (10)	-	10	3
2010s (4.5)	-	9	3
2010s (10)	-	20	6.7

* in original values

period 2010 to mid-2014 extrapolated to the whole decade of the 2010s

Source. Munich Re NatCatSERVICE 2014

Flood disasters Increase in number of events

Flood disasters Increase in losses

Flood disasters Increase in insured losses

Thailand floods 2011 Losses and consequences

Overall loss	US\$ 43bn
Insured loss	US\$ 16bn
Deaths	813
People evacuated	2,000,000
Homes destroyed/damaged	1,000,000
Flooded arable land	1.6 million hectares
Flooded production halls	1,000
Affected factories	15,000 – 20,000
Affected workers	500,000
Lost jobs	300,000 (permanently) – 700,000 (temporarily)
Largest inland flood loss of all times	7 th costliest natural catastrophe loss ever
Worldwide effects by interruption of supply chains	>US\$ 3bn

Thailand floods 2011 Contingent Business Interruption (CBI) losses

Worldwide effects by interruption of supply chains: Flood in Thailand, loss in USA (e.g.). Global players among the most affected companies.

Japanese car producers had to cease operations: production loss of 6,000 cars/day.

The closure of a hard drive plant had a worldwide impact. 25% of all hard disk drives are manufactured in Thailand. The sector was hit by shortages and prices rose.

Estimated CBI loss	Loss amount	Vehicle construction	Computer, electronic and electrical equipment	Other
	(US\$ bn)	(%)	(%)	(%)
total	3.06	53	38	9
insured	2.04	46	43	11

Drought

Significant droughts in the period 1980–2015

Period	Affected area	Direct overall losses in US\$ m (original values)	Insured losses in US\$ m (original values)
June–Sep 2012	United States (esp. Midwest)	25,000	12,000
Jan-Dec 1988	United States (esp. Midwest)	15,000	650
July-Aug 2003	Europe	14,000*	1,100*
Apr-Oct 2002	United States (esp. Great Plains)	10,000	2,000
Jan-Dec 2011	United States (esp. TX)	8,000	2,400
Jan-Jul 1996	United States, Mexico	6,200	500
May 1999 - Nov 2001	Iran	5,100	
Nov 2011 – Feb 2012	Argentina, Brazil, Paraguay	5,000	185
Dec 2013 – Mar 2015	Brazil (esp. South)	5,000	
Sep 1992 – Jan 1995	Spain	4,500	

*Including heatwave and subsidence losses.

from: Water Policy – Special issue on Droughts Drought aspects – fostering resilience through insurance

Wolfgang Kron*, Sabine Schlüter-Mayr and Markus Steuer

Direct overall annual losses from droughts and heatwaves (1980–2015)

Contributing values are inflation-adjusted using the local consumer price indices. Wildfire and subsidence losses are not included.

© Munich Re NatCatSERVICE 2016

Development of crop insurance premiums in the United States, China and India (1990–2014)

© Munich Re NatCatSERVICE 2016

All types of natural disasters Insured losses in 2015 as percentage of overall losses

Resilience

= the ability

- a. to return to the original form after strain or deformation ("bouncing back")
- b. to withstand significant external stress ("maintain essential functioning")

Resilience Preconditions for high resilience

Cumulative change of **GDP** following a major loss Munich RE

Countries without a natural catastrophe insurance scheme

Countries with a comprehensive natural catastrophe insurance scheme

Source: Munich Re, based on von Peter et al., Bank for International Settlements, 2012 (schematic presentation)

The international risk spreading system Reinsurance

The international risk spreading system Example of reinsured losses

typical percentages of reinsured losses: weak markets: >90% strong markets <50%

Cat Bonds

We have

potential of record losses from single natural catastrophes

huge amounts of money in the international financial markets

Alternative Risk Transfer (ART):

Catastrophe bonds (Cat bonds)

- → financial instruments, which supplement the classical distribution of risk via the reinsurance market.
- \rightarrow geared to very large potential losses
- \rightarrow mainly used in developed countries

How does it work?

A specified risk (e.g. losses from a hurricane in Florida) is transferred from a risk carrier (sponsor) reinsurers, large companies such as a national railroad company

toinvestorshedge funds, specialised catastrophe-oriented
funds, asset managers, life insurers, reinsurers,
banks, pension funds

The investor buys a share of the cat bond.

If the catastrophic event for which the bond is issued does

- not occur: the invested capital plus high interest is paid back to the investor at maturity.
- occur: the investor loses its principal or a portion of it.

How is "occurrence" (triggering of the cat bond) defined?

- by a certain loss to the sponsor (indemnity trigger)
- by a market loss (industry loss index trigger)
- if a set of certain defined physical threshold values (e.g. wind speeds at certain points or discharges) are exceeded (parametric trigger).

Micro-Insurance

Insurance penetration in little developed countries is low.

Reasons:

- lack of risk awareness
- lack of financial means
- insurance cover is not available

Micro-Insurance

For whom is it meant?

- for low-income people,
- for people ignored by mainstream commercial and social insurance schemes,
- for people who do not have access to regular products.

For what is it meant?

- to provide cover against specific perils in exchange for regular premium payments,
- to help people to manage their risk better,
- to help people to maintain their standard of living.

Micro-Insurance

How does it work?

basically, like any other insurance scheme, but some aspects make a difference:

- MI does not cover a single client but rather thousands of clients under one contract.
- MI requires an intermediary between the client and the insurance company (e.g. a local non-governmental organisation or a rural bank that can handle the distribution and administration).

What are the problems?

- low premiums and high transaction costs per client,
- lack of infrastructure,
- lack of insurance knowledge,
- insurance illiteracy (clients do not understand the concept of insurance),
- low and irregular income,
- lack of data.

Most important:

Raising awareness and educating the people concerned.

Micro-Insurance Example

A scheme for underprivileged residents of Jakarta, who suffer from flooding almost every year, was set up in 2008, ...

Micro-Insurance Example

... but abandoned in 2010.

Why?

It did not work, because people had high expectations for government compensation (as in the past) and were not interested in the insurance product.

Jakarta

G7 Climate Risk Insurance Initiative -Protection for the most vulnerable

- Create effective climate risk insurance solutions in relevant developing countries
- Contribute to enhance poverty reduction, climate resilience, economic growth
- Pledges amounting to USD 420 million have been made by G7 members
- Strengthen insurance-related facilities and initiatives:
 - African Risk Capacity (ARC)
 - Caribbean and Central American Catastrophe Risk Insurance Facility (CCRIF)
 - Pacific Catastrophe Risk Assessment and Financing Initiative (PCRAFI)
 - Climate Insurance Fund (CIF)
 - Climate Risk and Early Warning Systems Initiative (CREWS)

Urbanisation Jakarta 1975

Urbanisation Jakarta 1990

Urbanisation Jakarta 2010

Subsidence

Simulations for three coastal 100-year inundation scenarios showing exposed assets for different landuse types

